Improving Models of Forest Carbon and Water Cycling: Revisiting Assumptions and Incorporating Variability

IPCC AR4 NPP response to doubling of [CO₂]: +12-76%

How close is close? Bias vs. Variability

From Schäfer et al. 2003

Improving Models of Forest Carbon and Water Cycling

Incorporating Variability

- Fast Fluxes, Slow Growth
- How Close is Close?
- Model Structure
- Data Distributions
- Using Parameter Distributions

Evaluating Assumptions

- Nighttime T & Flux Magnitudes
- Water Storage & Flux Time Lags
- New Sampling

Extensions to Other Data

Modeling Photosynthesis Using 4CA: Canopy Conductance Constrained Carbon Assimilation

$$A_N = g_{sc}(c_a - c_i) = g_{sc}\left(1 - \frac{c_i}{c_a}\right)$$

 $g_{SC} \ge g_{crit}$ and PPFD>Q_S?

NO

$$c_i/c_a = \overline{c_i/c_a}$$

$$c_i/c_a = f(PPFD, g_{SC})$$

A_{NC}

Env. Conditions (Stand Scale)

 $A_{
m NC}$

Env. Conditions (Stand Scale)

Leaf Area (Stand Scale)

 A_{NC}

Env. Conditions (Stand Scale)

Water Use (Tree Scale)

Leaf Area (Stand Scale)

 A_{NC}

Env. Conditions (Stand Scale)

Photosynthetic Responses (Leaf Scale)

Water Use (Tree Scale)

Leaf Area (Stand Scale)

 $A_{
m NC}$

Branch Imaging (M. Thérézien)

Light Model Parameters

Spherically
Averaged for 10
sun & 10 shade
branches

STAR * $4 = \Pi$

Incorporating Variability

Improving Models of Forest Carbon and Water Cycling

Incorporating Variability

- Fast Fluxes, Slow Growth
- How Close is Close?
- Model Structure
- Data Distributions
- Using Parameter Distributions

Evaluating Assumptions

- Nighttime T & Flux Magnitudes
- Water Storage & Flux Time Lags
- New Sampling

Extensions to Other Data

Sap Flux in 4CA model

- Constrains assimilation
- 'Zero flow' calibration
- Usually measured at breast ht.
- Radial variation
- Integrates over entire leaf area distal to sensor

Leaf Light Responses

- Partition canopy conductance to canopy layers
- •Yet to be checked against profiles of sap flux within crown

MODELED

MEASURED

SUB-

PARAMETER

Sap Flux Estimates: Effect of Nighttime Transpiration

Ward, Oren, Sigurdsson, Jarvis and Linder. 2008. Tree Physiology 28 (4).

Sap Flux Estimates: Effect of Water Storage

Ward, Oren, Sigurdsson, Jarvis and Linder. 2008. Tree Physiology 28 (4).

Sap Flux Estimates: Effect of Water Storage

	Ambient–	Ambient–	Elevated–	Elevated–
	Control	Fertilized	Control	Fertilized
$ au = C_{ m leaf}/K_{ m leaf}$	11.1 ± 0.6 a	$10.5 \pm 0.9 a$	14.0 ± 1.1 b	15.6 ± 1.0 b

Domec, Palmroth, Ward, Maier, Thérézien and Oren (In Review)

New Sampling

- Profiles of Sap flux (BH, BLC, 3 whorls)
 - 12-16 trees (3-4 per treatment)
 - Time lags, capacitance
 - Gs partitioning
 - Modifications to detect zero flow
- Porometry (Light Curves)
 - Gs partitioning
 - Nighttime conductance at 1 kPa VPD
- Branch Chambers
 - Nighttime stomatal response to VPD

Other Data Sets

Also, to what can we relate short term estimates of Anet?

Photosynthesis, Stem Respiration & Growth

Figure 1. a) ACES soil respiration chamber b) schematic showing air flow within ACES soil chamber.

Cross Correlation of Gs and Soil Respiration from Stoy et al. 2007 (detrended for temperature effects)

Acknowledgements

- Ram Oren, Sari Palmroth, Chris Oishi, Heather McCarthy, Hyun-Seok Kim, Mathieu Therezien, Josh Uebelherr, Jeff Pippen
- US-DOE-OBER-GCEP-GREF
- Stan Wullschleger
- Kurt Johnsen, Alan Gelfand, J.C. Domec, Bill Bauerle, Jim Clark
- Duke FACE and Duke Forest staffs

Sap Flux Estimates: Effect of Water Storage

Sap Flux Estimates: Effect of Water Storage

Domec, Palmroth, Ward, Maier, Thérézien and Oren (In Review)

RC hydraulic model

